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DYNAMICAL PROPERTIES OF LIQUID BINARY 
ALLOYS: A MEMORY FUNCTION STUDY 

YA. CHUSHAK’.’, T. BRYK’.’. A. BAUMKETNER’, 
G. KAHL’ and J. HAFNER’ 

‘Institute j iw Condensed Matter  Physics, National Ukraini~in A c d e m y  
of Sciences, 1 Soientsitsky St., Lcio 29001 1 ,  Ukraine 

’lnstitut f u r  Theoretische Physik and C M S ,  TU W i e n ,  Wiedner 
HauptstraPe 8-1 0,  A-1 040 Wien ,  Austria 

(Rewired IN Decerdwr- 1995)  

The dynamical properties of binary liquid mixtures are investigated within a viscoelastic model using the 
memory function approach. Extending the viscoelastic model to the binary case we find that the dynami- 
cal properties of the liquid mixture are characterized by four propagating and two diffusive modes. We 
show that the character of the t w o  propagating modes depends strongly on the relative concentration of 
the light and heavy atoms, in close analogy to the vibrational eigenmodes in substitutionally disordered 
crystalline and glassy mixtures. The relation of these two eigenmodes to the “fast sound” phenomenon 
observed in mixtures with strongly different masses is discussed. 

K E Y  WORDS: Viscoelastic model. Langevin equations. 

1. INTRODUCTION 

During the past decade the study of the dynamical properties of liquid metals has 
been the subject of numerous theoretical and experimental investigations (see, e.g.,’ 
for an overview). Much less attention has been devoted to the microscopic dynamics 
of liquid alloys. Ever since the first theoretical study of the collective excitations in a 
liquid Na,,, K O  alloy’ only a few further experimental3 and theoretical investiga- 
tions (by means of computer simulations)“6 have been performed. Among these one 
of the most significant results has been obtained by Bosse e t ~ i 1 . ~  in a molecular- 
dynamics (MD) study of a liquid Li,,,Pb,,, alloy where a new high-frequency 
collective mode at long wavelengths (“fast sound”) was found. Meanwhile such 
modes were also observed in other systems (such as water’, He-Ne mixtures8 or 
liquid Li,T1 and Li, Pb  alloys’). The crucial parameter for the appearance of such a 
phenomenon are disparate masses. The appearance of a second “second” mode 
differs from what is expected in the hydrodynamic approximation, where only one 
sound propagation frequency is predicted. The pioneering studies of the fast sound 
phenomenon where based on an analysis of the dynamic structure factors obtained 
from the inelastic scattering experiment and from M D  simulation: the dynamic 
structure factors S ( k ,  (0) are fitted by a linear combination of Lorentzians’. I t  turns 
o u t  that a minimum number of four Lorentzians centered at * ( ~ : ~ ) ( k ) ,  j =  1 ,2  is 
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88 YA. C H U S H A K  e t a / .  

needed for an accurate fit. The higher-lying eigenmode at a frequency u,:” ( k )  > ck 
(where c stands for the velocity of sound) is visible in S ( k , w ) .  It can be associated 
with the motion of the lighter particles and represents the fast sound mode: this 
mode is virtually identically with the hydrodynamic sound mode in a fluid consist- 
ing of the lighter particles only. The mode with ,:’) ( k )  < ck is not directly visible in 
S ( k ,  (o), it corresponds to slow motions of the heavier particles. These results have 
been analyzed in a kinetic model (hard-sphere mixtures and in the dense-fluid and 
gas states)”-I3 which predicts that the fast sound vanishes at very long wavelength 
and that the slow sound merges with the hydrodynamic sound mode in this range. 

In this paper we want to investigate whether the fast sound phenomenon is also 
relevant for understanding the dynamical properties of liquid metal alloys with a 
moderate to large difference in the atomic masses. Our approach to describe the 
dynamics of liquids is based on the viscoelastic model using the memory function 
approachI4. As found in a large number of studies a simple exponential ansatz for 
the second order memory function can describe already fairly well the dynamic 
structure factor of one-component liquids in the ( k ,  w)-range accessible to neutron- 
scattering experiment. We have recently used the viscoelastic model to analyze the 
complex structures of the molten metallic state of the semiconductor Ge and the 
molten semimetal As’5. 

In this contribution we extend the memory function framework to study the 
dynamic structure factor of liquid binary alloys. We truncate the (generalized) con- 
tinued fraction expansion of the intermediate scattering functions F i j ( k ,  t )  at the level 
of the second order memory function (as usually done in the one-component case) 
and thus yield approximate expressions for the F i j ( k ,  t )  corresponding to those 
obtained in the one-component case from the three-pole approximation proposed 
by Lovesey’‘. This model allows a direct calculation of the dispersion relations and 
of the half-widths of the eigenmodes from the memory functions, as well as the 
calculation of the partial dynamic structure factors. 

The systems investigated are K,,,Cs,,, and K,.,Cs,,,, with the mass-ratio 
mCs/mK - 3.4. For both compositions the viscoelastic approach predicts six eigen- 
modes at each wavevector: four propagating modes with +my’, ,j = 1,2 and two 
diffusive modes. The two independent propagating modes show a characteristically 
different behaviour in the two alloys. At a majority composition of the lighter atoms 
(K) we have in zeroth order a dispersive “host” mode intersecting with a dispersion- 
less “impurity” mode at low frequency. Around the intersection, the interaction leads 
to the formation of a hybridization gap. In a first approximation we can associate 
the two modes with “acoustic’’ and ”optic” oscillations (with both atomic species 
moving in and out of phase, respectively). In the hydrodynamic regime the “optic” 
mode is strongly damped. At very large values of the mass ratio, the “impurity” 
mode drops to very low frequency. In this case the “optic” mode can be followed 
down to small wavevectors and becomes the fast sound mode. At a majority concen- 
tration of the heavier atoms (Cs) we have again a dominant host mode, but now an 
impurity mode that lies above the spectrum of the host modes. In this case the 
interaction is much weaker and no fast sound phenomenon can be expected. We 
also discuss the dynamics of the liquid alloys in relation to the dynamical properties 
of crystalline and glassy alloys. 
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DYNAMICS OF BINARY ALLOYS 89 

The paper is organized as follows: in Sec. I1 we give the basic formulae of the 
generalized viscoelastic theory. In Sec. 111 we present results obtained for two liquid 
alkali alloys and discuss the main results in relation to the dynamics of crystalline 
and  glassy systems in Sec. IV. 

2. BASIC THEORY 

The Model 

We consider a binary liquid in a volume Vat the temperature 7; the total number 
density is given by p.  Each species (i  = 1,2) is characterized by the number of 
particles N i ,  the partial number densities pi  = N i / K  the concentrations ci = N,,", 
and masses mi. The interatomic potentials are denoted by y, j (r)  and k ,  stands for the 
Boltzmann constant. 

We define the Fourier-transform of the partial number densities as 

Since we only consider spherically symmetric potentials the quantities of interest will 
only depend on the modulus k = Izl. We are interested in the intermediate scattering 
function F i j ( k ,  t ) ,  defined as 

where the last equation defines the matrix F(k, t ) .  The angular brackets indicate 
equilibrium averages. At t = 0, F ( k ,  t )  reduces to the matrix of the partial structure 
factors S , , ( k )  

F(k, t )  and S ( k ,  t )  are symmetric. The partial dynamic structure factors S,,(k, ( I J )  are 
tiine Fourier-transforms of the corresponding intermediate scattering functions 

1 f r  

S i j ( k ,  I O )  = - dtei"JrF;, j(k. t ) .  
27l ' J  L 

(4) 

Within the Mori-Zwanzig f o r ~ n a l i s m ' ~  it is straightforward to  write down the 
generalized Langevin (or memory function) equations for the F , ( k ,  t)' ' 

d ~ M ( k ,  r)F(k, t - T )  ( 5 )  
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90 YA. CHUSHAK r i a l .  

where M ( k , t )  is the memory function matrix. It is convenient t o  introduce the 
Laplace-transform of the correlation functions (denoted throughout by a tilde), 
defined as 

r r  

Then the formal solution of Eqn. (5) is given by 

F(k, Z) = [zI + M(k ,  z ) ] -  F(k, 0). (7) 

where I denotes the unit matrix. It can be shown14 that the memory functions 
M,,(k,  t )  are themselves dynamic correlation functions; hence they satisfy an  equa- 
tion similar to (5) introducing the second order memory functions Nij(k, t )  as kernel 
functions and  the formal solution 

M(k, Z )  = [zI + K(k, z )]  - ' M(k, 0). (8) 

In principle this procedure can be continued. Due  to the so-called sum-rules the 
initial values of the memory functions M j j ( k ,  t = 0) and Nij(k, r = 0) are fixed to the 
frequency moments of S i j ( k ,  w )  via 

M ( k ,  0) = W' ( k )  [o, ( k ) ]  ' 

where the o"(k) are the matrices of the n-th moments 

The required moments are given by [18] 

2 klJT 
( W p ) )  = S i j ( k )  (wi2j(k)) = b i jk  - m: 

If we introduce memory functions of order higher than two, we would need 
frequency moments of order six which in turn require in their explicit expressions 
triplet correlation functions. In this contribution we restrict ourselves-as usually 
done-to memory functions up to order two. 
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DYNAMICS OF BINARY ALLOYS 91 

Based on this approach one can-theoretically-give exact expression for the dy- 
namic correlation functions by means of “first principle” theories, as, e.g., the mode- 
coupling theory proposed by Sjogren and Sjolander”. Here we have resorted to a 
model by introducing an approximation at the level of the second order memory 
function. I t  is a generalization of a simple model, proposed by Lovesey for 
monoatomic liquids” which has proven to give reliable results for simple liquids: in 
this approximation we replace the Laplace-transforms of the third-order memory 
functions Rij(k,  z) by their valus at z = 0 

where 

R , j ( k , O ) =  d t K i j ( k , t )  i: 
and hence truncate the sequence of memory functions at the level of order two. The 
explicit expressins for the K j j ( k )  are given at the end of this section. The second 
order memory functions &‘,j(k,z) are then obtained from the solution of the corre- 
sponding memory function equations, i.e., 

N(k, Z )  = [zl + K(k)] ~ I N(k, 0). (14) 

In particular, for the component funcitons N j j ( k ,  t )  this approximation leads to an 
expressions which is a linear combination of two exponentials 

where z 1  and z 2  are the roots of the equation 

Det [zI + K(k)] = 0 (16) 

(17) 
and 

biJ(z) = N i j ( k ,  O)[z + Kmnl(k)1 - N m j ( k ,  O)K , , , (k )  (rn = 1,2 and m # i). 

We want to point out that within this model the F i j ( k ,  t )  (and hence the S i j ( t , W ) )  
satisfy the sum-rules up to order four irrespective of the choice of R ( k ,  z). 

From equations (8) and (14) we find that K(k) is related to M j j ( k ,  t )  via 

~ ( k )  = ~ ( k ,  o)M(k, = O)M ~ I (k ,  0) (18) 

where 

s: - 
M i j ( k , O )  = d f M i j ( k ,  t). 
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92 YA. CHUSHAK eta/ .  

From the short-time behaviour of Mij (k ,  t), 

we obtain f i i j ( k ,  0) = 5 M i j ( k ,  0 ) d W  where the coefficient { depends on the 
model used for the higher-order terms. 

In the limit k -  o(j the S i j ( k , O )  should converge to the free-gas result where 

Si j (k ,  0) = dij ~~ 

( 2 L  :$l'z 

and M(k, 0) and M(k,  0) become diagonal matrices. It is easy to show that the above 
free-gas limit is obtained if 5 = 2/71 and 

The K i i ( k )  have the same functional form as encountered in Lovesey's model" for 
simple liquids. 

Based on this model the dispersion relations w,(k) = i z (k )  are obtained as the 
solutions of the equations 

Det [zI + M(k,  z ) ]  = 0 (24) 

which in our approach reduces to an equation of order six in z .  These roos corre- 
spond to six modes: two of them (j = 3,4) turn out to be real, i.e., they describe 
purely diffusive (non-propagating) processes. The remaining four roots are two pairs 
of complex conjugate roots [z ' j ) (k)  = -T(j)(k) k iwy)(k), ,i = 1,2]: they represent the 
dispersions wf;"(k) and the sound damping coefficients P ( k ) .  

In literature, very frequently the position of the main peak in the longitudinal 
current correlation function C,(k, c ~ ) / C , . ~ ~ ( k ,  w) as a function of k is also called disper- 
sion relation, which we will denote in this contribution by w,(k)/ofj(k). Since 
C,(k,  w )  = (w2 /k2)S(k ,  w)  and since the dynamic structure factor is easily accessible 
from our model, we will also compare the w,(k)'s with @ ( k ) .  

The total neutron-weighted dynamic structure factor S(k ,  w)  is obtained from the 
partials Si j (k ,  w )  by means of the standard relation 

with bi = h,/J=, i = 1,2 where hi are the scattering lengths for species i 
(taken from"). 
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D Y N A M I C S  O F  BINARY ALLOYS 93 

The Static Structure 

The interatomic potentials are calculated from simple Ashcroft “empty-core” 
pseudopotentials” using the dielectric screening function with the local-field correc- 
tions proposed by Ichimaru and Utsumi”. For more details about the construction 
of the effective pair potentials for binary alloys we refer the reader toz3. 

The static structure of the binary alloys investigated has been determined both in 
MD simulations as well as by means of integral-equations techniques. The simula- 
tions have been performed using a standard micro-canonical simulations technique 
for 4000 particle ensemble. The static structure functions were obtained as averages 
over 20 000 time-steps. Details about the integral-equation technique are given else- 
wherez4; it is based on a universal modeling of the bridge-functional2’ and has led 
for a large variety of systems to very satisfactory results. The partial static structure 
factors for K,,,Cs,,, are shown in Figure 1. Agreement between the MD simulation 
and the integral-equation results turns out to be very satisfactory. Based on the 
static structure and the interatomic potentials the moments o “ ( k )  have been cal- 
culated using the standard expressions listed above. 

3.  RESULTS 

We have studied the dynamical properties for two liquid binxy alkali alloys by 
means of tee model outlined above: K,,,Cs,,,(p = 0.01083 A-3)  and K,,,Cs,,, 
( p  = 0.0091 A-,), both at a temperature of 373 K. 

Figure 1 
labeled as obtained from the integral-equation approach. 

Partial static structure factors S, j (k )  for a K,,,Cs,,,, alloys and total structure factor S ( k )  as 
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94 YA. CHUSHAK et al. 

Figure 2 shows the dispersion relations w(jJ(k),,j = 1,2 (i.e., the two roots of the 
propagating modes according to Eqn.(24) for the two alloys considered in this 
study. Furthermore we have depicted the dispersion relations calculated for the pure 
elements K and Cs within the same method at the same temperature. This compari- 
son shows that the low-energy mode is essentially determined by the motions of the 
heavier atoms. However, whereas at a majority concentration of the heavy atoms it 
follows closely the dispersion law of pure liquid Cs with a dispersion-minimum close 
to the position of the first peak in the static structure factor (cf. Fig. l), at a majority 
concentration of the lighter atoms the mode follows the sound-wave dispersion only 
at small k and shows little dispersion at larger wavevectors. The high-energy mode 
has a finite frequency at k = O  (like an optic mode in a crystal) and follows the 
dispersion law of the lighter species at larger k .  The dispersion is strongly reduced if 
the lighter atoms are the minority species. 

In Figures 3 and 4 we display the two dispersion relations wf)(k) ,  j = 1,2 along 
with the dispersion relations wf’(k) (i , j  = K, Cs) obtained from the positions of the 
main peaks of the partial current-correlation functions Cf’(k, w )  = (w2/kz)Si j (k .  (0). 

Figure 3 shows the results for the K-rich alloy, Figure 4 for the Cs-rich system. In 
both cases w y ( k )  follows closely the low-frequency dispersion @ ) ( k ) ,  while coFK(k) 
merges for intermediate k‘s with the high-frequency mode w;’)(k). Differences be- 
tween ofK ( k )  and whl’(k) are observed in particular for small k’s where wj”(k) tends 
to a finite frequency as the optic modes in a crystal. A further characteristic differ- 
ence between the high-frequency propagating mode and the other modes appears 

I I  

I 2  

I0 

8 
w (I;) 
( p d )  

(i 

4 

2 

I) 

o ‘ ~ o o o  
0 0 

0 .’/* i* :* 

0 0.5 I I 5  ) 

k (A-1) 

Figure 2 Dispersion relations uy(k), j = 1,2 for the two binary alloys studied along with the dispersion 
relations w, (k )  for the pure metals. Symbols: open circles-pure K, full circles-pure Cs; full lines- 
K0,3C~0.7,  dotted lines- Ko,7C~o,,; the upper (lower) curves correspond t0.j = l(2). 
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0 0 5  1 1 5  2 

k (kl) 
Figure 3 Dispersion relations t!~j”(k), j  = 1,2 for the K O  ,Cs0,., alloy ( j  = I  -upper fu l l  curve, j = 2-lower 
full curve) along with the dispersion relation c,~;’(k)  derived from the positions of the peak in the total and 
partial longitudinal currcnt-correlation functions to’S(k. cu)/k’(*). tU’SKK(k,tfJ)/k2 (0) and t~o’S,,,,(k. CfJ)/k2 
(0 ) :  cl’  = K and ‘2’ = Cs). 

when we consider the damping coefficients r“.”(k), defined as the real parts of the 
roots z ( j )  of Eqn. (24), displayed in Figure 5 and 6. In contrast t o  the other modes 
(including also the non-propagating modes z ‘ j ) (k ) ,  k = 3,4, i.e., the purely real roots) 
the damping of the high-frequency mode is in particular strong a t  low k .  It increases 
with decreasing k and remains non-zero for k = 0. For all other modes the damping 
goes to zero in the limit k = 0. The strong overdamping of the high-frequency mode 
(or fast sound) was also observed in hard-sphere mixtures by Campa and  Cohen’*. 
The characteristic difference between the two alloys is that the interaction between 
the low and high-frequency modes is strong at  a majority concentration of the 
lighter atoms whereas i t  is weak at  a majority of the heavier atom. Where the two 
modes are nearly degenerate at low wavenumbers, we would expect a fast sound 
effect; in this range the damping of the high frequency mode is also minimal. At 
majority concentrations of the heavier atoms the frequencies are sufficiently different 
a t  all wavevectors, and the damping is always much stronger for the high-frequency 
than for the low-frequency mode. 

Due to the strong damping, it will be rather difficult to observe the high-frequency 
mode experimentally. Since the scattering lengths of K and  Cs are not too different 
(hK = 0.37, h,, = 0.55;20), the situation is relatively favourable for the K-rich alloy. 
Figure 7 shows the partial and the total (neutron-weighted) dynamic structure 
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Figure 4 Same as Figure 3, but for K,,,Cs,, , 
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Figure 6 Damping coefficients T(k) for the K I ,  3Cso , a l loy  as labeled, 

factors for the K O  ,Cs0 alloy a t  a range of wavevector. The frequencies of the 
propagating eigenmodes are indicated by an  arrow. In the small-k limit, the high- 
frequency mode is overdamped and makes no visible contribution to the total 
structure factor. At intermediate wavenumbers ( k  - 0.3 A ’) the eigenfrequencies 
are very close to each other, and their contributions merge in the single inelastic 
peak of the total structure factor. Note that O J : ” ( ~ )  is associated with a distinct peak 
in S l , ( k , m )  whereas to:”(k) causes o n l y  a weak shoulder in S,,(k,ro). Both modes 
are best resolved around k - 1.0 A- ’ where the contributions from both propagat- 
ing modes superpose to form a broad plateau at the foot o f  the quasielastic peak. I t  
is much more difficult to observe the high-frequency mode in the Cs-rich alloy where 
it manifests itself only in the form of a high-frequency tail of the main inelastic peak 
(see Fig. 8). 

4. DISCUSSION 

Although the results presented here indicate some similarities with the fast sound 
phenomenon, the basic physics are best understood in terms of a simple impurity 
model. At a majority concentration of the heavier atoms, the starting point is a 
simple model consisting of a “host” mode following the dispersion relations of the 
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Figure 7 Partial and total (neutron weighted) dynamic structure factors S(k,to) and S,,,(k.cu) for KO,, Cs,,,, 
at different wavevectors up to k = l . O k ’ .  Full line-S(k,tu), o-S,,(k,to),  -S,,,,(k,to), -S,,,(jk,tu). The 
vertical arrows mark the frequencies of the propagating eigenmodes (cf. text). 

pure liquid of the majority species and a dispersion-less high-frequency impurity 
mode. The slight modulation of the high-frequency impurity mode follows again the 
dispersion relation of the pure liquid of the lighter atoms. The situation is complete- 
ly  analogous to that found in an analysis of the lattice vibrations of a substitution- 
ally disordered body-centred K,Rb, -, alloy in the range .Y = 0.06-0.29, both ex- 
perimentally by neutron-scattering26 and theoretically via recursion calculations of 
the phonon-spectrum2’. In the limit of an ordered distribution of the impurity 
atoms, the high-frequency propagating mode becomes the optic mode of the ordered 
compound. The designation as an optic mode is not entirely inappropriate in the 
liquid alloy as well, in the sense that mainly the lighter atoms participate in this 
optic mode. At a majority concentration of the lighter atoms, the impurity mode 
occurs as a resonance within the frequency-range of the host-vibrations. At  the point 
of intersection between the sound mode of the host-atoms and the stationary impur- 
ity mode, the interaction of the two modes lifts the degeneracy, and this immediately 
leads to the dispersion relations shown in Figure 2. The strong interaction also leads 
to the strong damping of the high-energy mode in the long-wavelength limit. Again 
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Figure 8 Same as Figure 7, but for K ,  JCso7 

the situation is completely analogous to that in a substitutional crystalline alloy (see 
the results on K0,67Rb0,33 in Ref.27) and in a glassy Mg,.,Zn,,, alloy2*. For the 
glassy alloy, the theoretical predictions have been verified by inelastic neutron scat- 
tering experimentsz9, although only recently neutron Brillouin-scattering ex- 
periments have made it possible to verify the existence of both the high- and low- 
energy eigenrn~des~ ' .~ ' .  

The question is now: How does this scenario relate to the fast sound phenom- 
enon? Is there a continuous transition between the long-wavelength behaviour of 
our optic mode and the fast sound mode, or is fast sound an entirely new phenom- 
enon? Figure 9 shows the dispersion relations for the hypothetical cases where the 
mass of the heavy atoms has been increased by a factor 3, respectively 10, relative to 
Cs. We find that-as expected-the frequency of the low-energy mode w;"(k) de- 
creases, whereas the high-energy mode cr~Sl ) (k )  is nearly unaffected. The damping of 
the low-energy mode decreases, whereas the damping of the high-energy mode 
remains as strong as at lower mass-ratios. The dispersion-relations of'(k),  i = K or 
Cs and w , ( k )  derived from the current correlation functions show a curious behav- 
iour: at low k they are determined by the low-energy, at larger k by the high-energy 
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Figure9 Dispersion relations w,y’(k),j= 1,2 and of’(k), i = K, Cs for a “Ko,,Cs,,3” alloy, but with the 
mass of the “Cs”-particles increased by a factor 3(a), respectively 10(b) (for symbols cf. Fig. 3 and text). 
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Figure 10 
10.2, full lines ~ mass-ratio = 3.4; upper curves ~ K, lower curves ~ Cs (for values of c ’  cf. text). 

Reduced dispersion relations G;(:’(k) = t o ; ’ (k ) / ck , j  = K ,  Cs. -mass-ratio = 34, o-mass-ratio = 

mode. In the transition region the Cs-Cs mode shows a negative dispersion. Above 
the transition region the oscillations of the lighter particles are more or less 
completely decoupled from the motions of the heavier atoms. If  we define reduced 
dispersion relations of‘(k) = wj’/ck where L‘ is the hydrodynamic velocity of sound we 
find that the dispersion relations of the slow and the fast modes merge with the 
hydrodynamic sound mode in the long-wavelength limit (for the c we find for the 
K,.,Cs,., alloys the values 1740 ms-’, 1185 ms-’ and 767 ms-’, corresponding to 
the “normal” Cs mass and to the increased Cs-masses by factors of 3 and 10, 
respectively). Only at larger wavevectors the two modes separate and slow and fast 
modes are observed (Fig. 10). We find that the onset of fast sound is shifted to larger 
k with a decreasing value of the mass-ratio, but there is no change in the essential 
physics. This result agrees with the light-scattering observations of Wegdam et 
on H,/Ar-mixttures at different densities. They showed that fast sound is observed 
only above a critical wavevector. For smaller k slow and fast sound merge with the 
hydrodynamic sound mode. 

Hence we find, in agreement with experiment, that there is a continuous transition 
from the conventional description of the dynamical properties of binary mixtures 
(whether liquid, glassy or crystalline) to the fast sound scenario. This means that the 
fast sound mode is in reality rather an optic mode where the light particles move out  
of phase with the heavy atoms (whose motion becomes very slow at large mass 
ratios), in contrast to the hydrodynamic sound mode where both species move in 
phase. 
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